
Warwick Mathematics Exchange

CS259

Formal Languages

2024, February 19th

Desync, aka The Big Ree

Front Matter Table of Contents

Contents

Table of Contents i

1 Introduction 1

2 Regular Languages 1
2.1 Deterministic Finite Automata . 1
2.2 Closure Properties of Regular Languages . 3
2.3 Non-Deterministic Finite Automata . 4
2.4 ε-Closure . 6
2.5 Languages Recognised by NFA . 9
2.6 The Subset Construction . 9
2.7 Regular Expressions . 10
2.8 Generalised Non-Deterministic Finite Automata . 11
2.9 Languages Recognised by Regular Expressions . 12

3 Non-Regular Languages 14
3.1 The Myhill-Nerode Theorem . 14
3.2 The Pumping Lemma for Regular Languages . 15

4 Grammars 16
4.1 Parse Trees . 18
4.2 Right/Left-Linear Grammars . 19
4.3 Chomsky Hierarchy of Grammars . 22

5 Context-Free Languages 23
5.1 Pushdown Automata . 23
5.2 Languages Recognised by PDA . 24
5.3 Chomsky Normal Form . 28
5.4 Cocke–Younger–Kasami (CYK) Parsing . 31

6 Non-Context-Free Languages 36
6.1 The Pumping Lemma for Context-Free Languages . 36
6.2 Finiteness of Context-Free Languages . 38
6.3 Closure Properties of Context-Free Languages . 38

7 Recursively Enumerable Languages 39
7.1 Modifications of Turing Machines . 42
7.2 Undecidability . 44

7.2.1 The Halting Problem . 44
7.2.2 The Membership Problem . 45

7.3 Computability and Reductions . 45
7.4 Closure Properties of Turing-Recognisable and Turing-Decidable Languages 47
7.5 Pairwise Intersection Closures Properties . 47

Formal Languages | i

Front Matter Preface

Introduction

A formal language is a set of words with letters selected from a fixed alphabet, and formed according
to a set of rules called a formal grammar. In computational complexity theory, formal languages can
encode decision problems, and hence provide a way of comparing the relative strength of various models
of computation by checking which languages they are able to parse. In logic, formal languages can be
used to represent the syntax of axiomatic and deductive systems, and hence mathematics itself can be
reduced to the manipulation of these formal languages.

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. In
particular, any content covered exclusively in lectures (if any) will not be recorded here. This document
was written during the 2023 academic year, so any changes in the course since then may not be accurately
reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

History
First Edition: 2024-02-16∗

Current Edition: 2024-02-19

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.

Formal Languages | ii

mailto:Warwick.Mathematics.Exchange@gmail.com
mailto:Warwick.Mathematics.Exchange@gmail.com
https://ko-fi.com/desync
https://ko-fi.com/desync

CS259 Introduction

1 Introduction

An alphabet is any non-empty set of symbols, often denoted by Σ. A word over an alphabet is a finite
sequence of letters. Note that the empty string, denoted by ε, is a word.

The Kleene star (−)∗, is a unary operation on sets of symbols defined as follows. Given a set V , we
define V 0 = {ε}, where ε is the empty word with length |ε| = 0, then recursively define

V i+1 = {wv : w ∈ V i,v ∈ V }

for each i > 0. That is, V i is the set of strings that can be formed by concatenating i strings in V
together. Then, the Kleene star on V is given by

V ∗ =
⋃
i≥0

V i

That is, V ∗ is the set of all possible words over V .

Note that if V is countable, then V ∗ is the countable union of countable sets and is hence countable.
Also note that a set of strings has a monoidal structure under concatenation, so the Kleene star of a set
V is exactly the free monoid on V .

Then, a formal language over an alphabet Σ is a set L ⊆ Σ∗. Note that there is no requirement that
this set be non-empty, so L = ∅ ⊆ Σ∗ is a language, called the empty language. Also, by definition, we
have that the empty word ε is in Σ∗ for any alphabet Σ. Note that L′ = {ε} is a non-empty language –
it contains the empty word.

Given a language L ⊆ {0,1}∗, we may interpret it as a decision problem by deciding whether a given
binary string belongs to L. Conversely, assuming a fixed efficient encoding, we can encode any decision
problem as a formal language by taking all strings representing yes-instances of the decision problem to
be in our language.

Theorem 1.1. There are functions f : N → {0,1} that are not computable by any algorithm.

Proof. Algorithms are finite sequences of finite alphabets of possible instructions, so there are only
countably many algorithms possible. Conversely, the set of functions N → {0,1} has size 2ℵ0 = P(N) = c,
which is uncountable. ■

2 Regular Languages

2.1 Deterministic Finite Automata
A deterministic finite automata (DFA) is an abstract machine that either accepts or rejects a given
word by reading through the symbols in the string and deterministically transitioning between different
internal states depending on the current symbol and its current state. Formally, a DFA is given by
5-tuple (Q,Σ,q0,F,δ), consisting of

• a finite set Q of states;

• a finite set Σ, the alphabet ;

• an initial state q0 ∈ Q in which to start the computation;

• a set F ⊆ Q of accepting or final states;

• and a transition function δ : Q× Σ → Q.

Formal Languages | 1

CS259 2.1 Deterministic Finite Automata

We can visually represent a DFA as either a state diagram, or a state transition table:

q0

q1

q2

q3

a

b,c

b,c

a

a,b,c

a,b,c

δ a b c

→ q0 q1 q2 q2
∗ q1 q1 q3 q3

q2 q2 q2 q2
q3 q3 q3 q3

On the left, the transition function is given by the labelled arrows between states; the initial state is
marked with a trailing arrow; and any final states are marked by two concentric circles.

On the left, the table on the right simply details the transition function, with the initial state marked
with an arrow, and the accepting states marked with an asterisk.

In either case, we run the machine on a string by starting at the initial state; consuming the first
character from the string; moving to the next state given by the transition function; then iterating this
process until the string is empty. If the DFA is in an accepting state when the empty string is reached,
then the word is accepted, and otherwise rejected.

Example. We run the string abc on the above DFA using the state diagram. We begin at q0. The first
character is a, so we proceed to q1 with the remaining string bc. The next character is then b, so we
move to q3 with remaining string c. The next character is c, so we remain at q3, and now the string is
empty. q3 is not an accepting state, so the string abc is rejected by this DFA. △

Example. We list the outputs of some more strings:

Input Output
a Accept
aa Accept
aab Reject
b Reject
c Reject
bca Reject

More concisely, this DFA accepts exactly the strings that consist solely of the character a. △

Let M = (Q,Σ,q0,F,δ) be a DFA, and let s = s1s2 · · · sn be a string, where si ∈ Σ for each i. We define
the run of M on s as follows:

• The run of M on ε is the state q0.

• The run of M on the non-empty word s is the sequence of states (ri)
n
i=0 given recursively by

ri =

{
q0 i = 0

δ(ri−1,si) i > 0

The run of M on a word s is called an accepting run if the last state in the run is an accepting state of
M , and we say that a word s is accepted or recognised by M if the run of M on s is an accepting run.
The set of strings that M accepts forms a language over Σ called the language accepted or recognised by

Formal Languages | 2

CS259 2.2 Closure Properties of Regular Languages

M , denoted by L(M).

L(M) := {s ∈ Σ∗ : the run of M on s is an accepting run}

Note that, for M to accept a language L′, it must not only accept only the words in L′, but also reject
every word in Σ∗ \ L.

The transition function δ : Q×Σ → Q of a DFA details the change in state upon reading a single symbol.
We can expand this function to the extended transition function δ̂ that expresses the change in state
upon reading an entire string.

Formally, we recursively define the extended transition function δ̂ : Q× Σ∗ → Q as follows:

• For every state q ∈ Q, we have δ̂(q,ε) = q;

• For every state q ∈ Q and word s ∈ Σ∗ with s = wa, w ∈ Σ∗, a ∈ Σ, we have δ̂(q,s) = δ
(
δ̂(q,w),a

)
Using the extended transition function we can also write the language recognised by a DFA M as

L(M) =
{
s ∈ Σ∗ : δ̂(q0,s) ∈ F

}
A language L is regular if it is accepted by some DFA.

Example.

• The empty language L = ∅ is regular; it is accepted by any DFA with F = ∅.

• The language L = Σ∗ is regular; it is accepted by any DFA with F = Q.

• The language L = {ε} is regular; it is accepted by the DFA

q0 q1
Σ

Σ

• The language L ⊆ {a,b,c}∗ defined by L = {s ∈ Σ∗ : the number of a’s in s is divisible by 3} is
regular; it is accepted by the DFA

q0

q1q2

a

b,c

a
b,c

a

b,c

△

2.2 Closure Properties of Regular Languages
Because languages are sets, ordinary set operations also apply to languages. Regular languages are closed
under certain operations, in the sense that the resulting language is also regular.

Regular languages are closed under

• Complementation:

If L is regular, then L = Σ∗ \ L is regular; if L = L(M) is accepted by M = (Q,Σ,q0,F,δ), then
L = L(M ′) is accepted by M ′ = (Q,Σ,q0,Q \ F,δ).

Formal Languages | 3

CS259 2.3 Non-Deterministic Finite Automata

• Intersection:

If L1 and L2 are regular, then L1∩L2 is regular. The idea here is to run the DFAs for L1 and L2 in
parallel by using the Cartesian product of states and applying the transition functions pointwise,
and accepting if and only if both original DFAs accept.

If L1 = L(M1) and L1 = L(M1) with M1 = (Q1,Σ,q1,F1,δ1), M2 = (Q2,Σ,q2,F2,δ2), then L1 ∩ L2

is accepted by the DFA
M =

(
Q1 ×Q2,Σ,(q1,q2),F1 × F2,δ

)
with δ : (Q1 ×Q2)× Σ → Q1 ×Q2 defined pointwise:

δ
(
(p1,p2),a

)
=

(
δ1(p1,a),δ2(p2,a)

)
• Union:

If L1 and L2 are regular, then L1 ∪ L2 is regular. This follows from De Morgan’s laws:

L1 ∪ L2 = L1 ∩ L2

and the closure properties of complementation and intersection, but we can also give an explicit
DFA that recognises this union. As before, the idea is to run the DFAs for L1 and L2 in parallel,
this time accepting if either of the original DFAs accept.

If L1 = L(M1) and L1 = L(M1) with M1 = (Q1,Σ,q1,F1,δ1), M2 = (Q2,Σ,q2,F2,δ2), then L1 ∩ L2

is accepted by the DFA

M =
(
Q1 ×Q2,Σ,(q1,q2), (F1 ×Q2) ∪ (Q1 × F2),δ

)
where δ is the same as for intersections.

• Relative difference:

If L1 and L2 are regular, then L1 \L2 is regular. This follows from closure under complementation
and intersection, as,

L2 \ L2 = L1 ∩ L2

• Concatenation:

If L1 and L2 are regular, then L1 · L2 = {wv : w ∈ L1,v ∈ L2} is regular. Proof requires more
machinery than we currently have.

• Kleene star:

If L is regular, then L∗ is regular. Follows from regularity of concatenation and unions:

L∗ = {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ · · ·

Note that L1 and L1 \ L2 being regular does not imply that L2 is regular. For instance, if L1 = ∅, then
L1 \ L2 = ∅, regardless of the regularity of L2.

2.3 Non-Deterministic Finite Automata
Are regular languages closed under reversal? That is, if L is regular, then is the language

Lrev = {w : w is the reverse of a string in L}

regular?

Consider the language L = {binary strings ending with 00}, accepted by the DFA

Formal Languages | 4

CS259 2.3 Non-Deterministic Finite Automata

q0

q1q2

0

1

0

1

1

0

To build a DFA that accepts Lrev, we’d might think to reverse all arrows, then swap the start and
accepting states:

q0

q1q2
1

1

1

0

0

0

However, this state diagram now has states with multiple exiting arrows labelled with the same symbol,
and some states do not have an exiting arrow for every symbol in the alphabet. Moreover, if we had
multiple accepting states, then we would also have multiple initial state in this reverse diagram. So, this
state diagram does not describe a DFA. We instead extend the definition of an DFA to a non-deterministic
finite automata (NFA).

A DFA must have exactly one transition out of a state for each symbol in the alphabet, so each word
has a unique run. In contrast, an NFA may have multiple or no transitions out of a state for any given
symbol, so an NFA may have multiple choices at each step, and the final state is not determined solely
by the start state and input word, instead having a branching tree structure.

An NFA may also have ε-transitions – transitions that do not consume any input. This allows us to deal
with multiple initial states by adding a new state to be initial, then adding ε-transitions from this state
to all the previous initial states.

Formally, an NFA is a 5-tuple (Q,Σ,q0,F,δ), consisting of

• a finite set Q of states;

• a finite alphabet Σ;

• an initial state q0 ∈ Q in which to start the computation;

• a set F ⊆ Q of accepting or final states;

• and a transition function δ : Q× (Σ ∪ {ε}) → P(Q).

The first four entries are the same as for DFAs, but because an NFA may have multiple or no transitions
out of a state for any given symbol, the transition function instead returns a set of states in P(Q), and
we also include ε in the domain to account for ε-transitions, so the transition function is then a function
δ : Q× (Σ ∪ {ε}) → P(Q). We also write Σε to denote Σ ∪ {ε}.

Formal Languages | 5

CS259 2.4 ε-Closure

Example. Consider the language L ⊆ {0,1}∗ defined by L = {every 1 is followed by 00}, accepted by the
DFA

q0 q1

q3

q2

q4

1
0

0

1 1

01

0

0,1

By reversing the arrows and adding a new state equipped with ε-transitions to the two previous accepting
states, we obtain a state diagram of an NFA that accepts Lrev = {every 1 is preceded by 00}:

q0

qs

q1

q3

q2

q4

ε

ε

0
1

1

0

0

0

1 1

0,1

We can also represent this NFA as a state transition table:

δ 0 1 ε

→ qs ∅ ∅ {q0,q3}
∗ q0 {q0} ∅ ∅

q1 ∅ {q0,q3} ∅
q2 {q1} ∅ ∅
q3 {q2,q3} ∅ ∅
q4 {q4} {q1,q2,q4} ∅

Note that every entry in the table is a set, unlike for a DFA.
We can also see that there is no way to enter state q4, so we may remove it from the NFA and simplify
the state diagram/transition table. △

2.4 ε-Closure
What does the extended transition function of an NFA look like? The ordinary transition function
already returns sets of states – unlike a DFA, which is deterministic and returns a single state – but we
also have to deal with ε-transitions at every step in an NFA. For this, we define the ε-closure function,

Formal Languages | 6

CS259 2.4 ε-Closure

eclose : Q → P(Q).

Informally, given a state q, eclose(q) is the set of states that can be reached from q by following
ε-transitions alone (including taking no ε-transitions, so q ∈ eclose(q)). Formally, given a state q,
eclose(q) is the minimal set such that

• q ∈ eclose(q);

• ∀p,r ∈ Q,
(
p ∈ eclose(q) ∧ r ∈ δ(p,ε)

)
→ r ∈ eclose(q).

eclose can be naturally extended to sets of states: given a set X ⊆ Q, we define

eclose(X) =
⋃
x∈X

eclose(x)

Note that the nullary union is empty, so eclose(∅) = ∅.

Example. In the following, dashed arrows represent ε-transitions.

0

3 4

1

5

2

6

7 8 9

eclose(0) = {0,1,6,8,9}
eclose(1) = {1,6,8,9}
eclose(2) = {2,6,9}
eclose(3) = {3}
eclose(4) = {3,4,8}

eclose(5) = {2,3,5,6,7,8,9}
eclose(6) = {6,9}
eclose(7) = {3,7}
eclose(8) = {8}
eclose(9) = {9}

△

The extended transition function δ̂ for an NFA N = (Q,Σ,q0,F,δ) is then a function δ : Q×Σ∗ → P(Q)
defined as follows:

• For every state q ∈ Q, we have δ̂(q,ε) = eclose(q);

• For every state q ∈ Q and word s ∈ Σ∗ with s = wa, w ∈ Σ∗, a ∈ Σ, we have

δ̂(q,s) = eclose

 ⋃
p∈δ̂(q,w)

δ(p,a)

Formal Languages | 7

CS259 2.4 ε-Closure

Example. The ε-transitions (and hence eclose sets on singletons) are the same as in the previous
diagram.

0

3 4

1

5

2

6

7 8 9

a

c a

b

c

c

a
b c b

b

b

a

a

a

c

b

△

• δ̂(0,a) = eclose
⋃

p∈δ̂(0,ε)

δ(p,a)

= eclose
⋃

p∈eclose(0)

δ(p,a)

= eclose
(
δ(0,a) ∪ δ(1,a) ∪ δ(6,a) ∪ δ(8,a) ∪ δ(9,a)

)
= eclose

(
{3} ∪ {2} ∪ ∅ ∪ {7,9} ∪ ∅

)
= eclose

(
{2,3,7,9}

)
=

⋃
z∈{2,3,7,9}

eclose(x)

= {2,6,8,9} ∪ {3} ∪ {3,7} ∪ {9}
= {2,3,6,7,8,9}

• δ̂(0,aa) = eclose
⋃

p∈δ̂(0,a)

δ(p,a)

= eclose
⋃

p∈{2,3,6,7,8,9}

δ(p,a)

= eclose
(
δ(2,a) ∪ δ(3,a) ∪ δ(6,a) ∪ δ(7,a) ∪ δ(8,a) ∪ δ(9,a)

)
= eclose

(
∅ ∪ {3} ∪ ∅ ∪ {7} ∪ {7,9} ∪ ∅

)
= eclose

(
{3,7,9}

)
=

⋃
z∈{3,7,9}

eclose(x)

= {3} ∪ {3,7} ∪ {9}
= {3,7,9}

• δ̂(0,b) = {6,8,9}

δ̂(0,c) = {0,1,6,8,9}

δ̂(8,a) = {3,7,9}

δ̂(9,c) = {2,3,5,6,7,8,9}

δ̂(1,a) = {2,3,6,7,8,9}

δ̂(2,b) = {2,6,9}

δ̂(3,c) = ∅

δ̂(4,a) = {1,3,6,7,8,9}

Formal Languages | 8

CS259 2.5 Languages Recognised by NFA

2.5 Languages Recognised by NFA
Previously, we defined the language L(M) recognised by a DFA M to be the set of words accepted by
M . That is,

L(M) := {s ∈ Σ∗ : the run of M on s is an accepting run}

=
{
s ∈ Σ∗ : δ̂(q0,s) ∈ F

}
However, unlike a DFA, which is deterministic and always returns the same output, the run of an NFA
on the same word may be different across several computations.

Let N = (Q,Σ,q0,F,δ) be an NFA, and let s be a string. A run of N on s is a sequence of states (ri)
n
i=1

such that

• r0 = q0;

• There exists a decomposition s = s1s2 · · · sn, with si ∈ Σ∪ {ε} for each i, such that for each i > 0,
ri ∈ δ(ri−1,si).

Then, an NFA N accepts or recognises a word s if there exists some accepting run.

Let N = (Q,Σ,q0,F,δ) be an NFA. Then, the language L(N) accepted or recognised by N is defined by

L(N) := {s ∈ Σ∗ : some run of N on s is an accepting run}

which we can again write in terms of the extended transition function:

=
{
s ∈ Σ∗ : δ̂(q0,s) ∩ F ̸= ∅

}
Because the extended transition function returns the set of possible states after reading a word, we just
check that it has non-empty intersection with the set of accepting states.

2.6 The Subset Construction
Are NFAs more powerful than DFAs?

Firstly, what do we even mean by “more powerful”? Intuitively, a computer is “more powerful” than a
simple pocket calculator, but how do we formalise this notion? We might notice that a computer can
have a calculator application within it – so a computer can do every task a calculator can. This shows
that a computer is at least as powerful as a calculator. Importantly, to make this comparison strict, we
note that there are tasks that a computer can do that a calculator cannot.

Given two computational models A and B, we say that A is more powerful or expressive than B if the
class of languages recognised by A is a strict superset of the class of languages accepted by B. Note that
it may be the case that two distinct computational models are incomparable under this relation if the
class of languages they accept are not supersets of each other in either direction.

Clearly, every DFA is an NFA, as an NFA is a relaxation of the requirements of a DFA, so NFAs are at
least as powerful as DFAs. However, are they strictly more powerful? It turns out that, for any NFA,
we may determinise it and construct an equivalent DFA that recognises precisely the same language via
the subset or powerset construction.

When a DFA is run on a word, we just keep track of a single state; that is, the state qi that is reached
upon reading a prefix of the input string, that can then be overwritten by the state that is reached upon
reading the next symbol s.

In contrast, when running an NFA, we need to keep track of the set of all states that could be reached
after seeing the same prefix, according to the non-deterministic choices made by the automaton. If,
however, after a certain prefix has been read, a set S of states can be reached, then the set of symbols

Formal Languages | 9

CS259 2.7 Regular Expressions

reachable upon reading the next symbol s is a deterministic function of S and s. That is, while the
states reached at each step in an individual run is non-deterministic, the set of states reachable at each
step over all possible runs is fully deterministic, and as such, traversing sets of reachable states in this
way describes the action of a DFA. This is the strategy of our construction.

Let N = (Q,Σ,q0,F,δ) be the NFA to be determinised. Then, the DFA M = (Q′,Σ,q′0,F
′,δ′) defined by

• Q′ = P(Q);

• q′0 = eclose(q0);

• F ′ = {X ⊆ Q : X ∩ F ̸= ∅};

• δ′(X,a) =
⋃
x∈X

eclose
(
δ(x,a)

)
=

{
z : ∃x ∈ X : z ∈ eclose

(
δ(x,a)

)}
accepts the same language.

Theorem 2.1. For all s ∈ Σ∗, δ̂(q0,s) = δ̂′(q′0,s).

Proof. We induct on |s|. If |s| = 0, then δ̂(q0,s) = δ̂(q0,ε) = eclose(q0) = q′0 = δ′(q′0,ε) = δ̂′(q′0,s).
Otherwise, suppose s = wa with w ∈ Σ∗, a ∈ Σ. Then,

δ̂(q0,s) =
⋃

p∈δ̂(q0,w)

eclose
(
δ(p,a)

)
=

⋃
p∈δ̂′(q′0,w)

eclose
(
δ(p,a)

)
= δ′

(
δ̂(q′0,w),a

)
= δ̂(q′0,s)

■

2.7 Regular Expressions
A regular expression, regex, or a pattern, over an alphabet is a construction that specifies or matches a
language over that alphabet. Regular expressions are defined recursively as follows:

Given an alphabet Σ, the following constants are basic regular expressions:

• (Empty set) ∅ is a valid regular expression, matching the empty language – L(∅) = ∅;

• (Empty string) ε is a valid regular expression, matching the language containing the empty string
– L(ε) = {ε};

• (Literal character) a ∈ Σ is a valid regular expression, matching the language containing only the
character – L(a) = {a};

and given two regular expressions R and S, we have:

• (Concatenation) R · S, or RS, is a regular expression, matching the set of strings that can be
obtained by concatenating a string accepted by R with a string accepted by S – L(R · S) =
L(R) · L(S);

• (Union) R+ S, or R|S, is a regular expression, matching the union of the sets matched by R and
S – L(R+ S) = L(R) ∪ L(S);

Formal Languages | 10

CS259 2.8 Generalised Non-Deterministic Finite Automata

• (Kleene Star) R∗ is a regular expression, matching the smallest superset of the set matched by R
that contains ε and is closed under concatenation – L(R∗) = L(R)∗;

In decreasing order, these operations have precedence ∗, ·, +.

Example. Let Σ = {a,b} and R = (a + b)∗ be a regular expression over Σ. Intuitively, (a + b) matches
“a” or “b”, so L(R) = Σ∗, but we can also unfold the definition algebraically:

L(R) = L
(
(a+ b)∗

)
= L

(
(a+ b)

)∗
=

(
L(a) ∪ L(b)

)∗
=

(
{a} ∪ {b}

)∗
= Σ∗

△

Example. If Σ = {a,b}, and R = (a+ b)∗(a+ bb), then

L(R) = L
(
(a+ b)∗(a+ bb)

)
= L

(
(a+ b)∗

)
L
(
(a+ bb)

)
= Σ∗L

(
(a+ bb)

)
= {all strings over {a,b} that end with a or bb}

△

Example. If Σ = {a,b}, and R = (aa)∗(bb)∗b, then

L(R) = L
(
(aa)∗(bb)∗b

)
= L

(
(aa)

)∗
L
(
(bb)

)∗
L
(
b
)

= {all strings over {a,b} with an even number of a’s followed by an odd number of b’s}

△

2.8 Generalised Non-Deterministic Finite Automata
Using regular expressions, we can define a generalised non-deterministic finite automaton (GNFA). A
GNFA is a variation of a NFA where each transition may be any regular expression, and there may
only be one transition between any two states, unlike a DFA or an NFA, which may have multiple such
transitions. Furthermore, A GNFA must have exactly one initial state and one accepting state, and these
states must be distinct.

A GNFA is a 5-tuple (Q,Σ,qstart,qaccept,δ), consisting of

• a finite set Q of states;

• a finite alphabet Σ;

• the start state, qstart ∈ Q;

• the accept state, qaccept ∈ Q;

• and a transition function δ :
(
Q \ {qaccept}

)
×
(
Q \ {qstart}

)
→ R, where R is the set of all regular

expressions over Σ.

Formal Languages | 11

CS259 2.9 Languages Recognised by Regular Expressions

2.9 Languages Recognised by Regular Expressions
As suggested by the name, regular expressions recognise precisely the class of regular languages, so NFAs,
DFAs, and regular expressions are equally as expressive.

Theorem 2.2. A language is regular if and only if it is described by a regular expression.

Proof. Given a regular language L = L(M) accepted by a DFA, we may convert this DFA into a GNFA
as follows:

1. Add a new start state with an ε-transition to the previous start state.

2. Add a new accepting state with ε-transitions from the previous accepting states to this state.

3. Any transitions with multiple labels may be replaced with a transition labelled with the union of
the previous labels.

4. Add transitions labelled ∅ between any ordered pair of states that

5. For any ordered pair of states that do not end at the start state nor begin at the accept state and
are disconnected may be connected with a new transition labelled with ∅.

This GNFA may then be converted into a regular expression as follows:

1. If there are only two states, then we are done, as these must be the unique start and accepting
states, and transition connecting them is a regular expression.

2. Otherwise, select some state qr ∈ Q \ {qstart,qend}. Then, for all (qi,qj) ∈
(
Q \ {qstart,qr}

)
×

(
Q \

{qend,qr}
)
, we may replace the transitions

qr

qi qj

R3

R2

R1

R4

by the single edge

qi qj
R1 ·R∗

2 ·R3 +R4

Once this has been done, we may remove qr from the diagram, then pick a new state to be qr, until
the diagram has only the initial and accepting state remaining.

For the reverse implication, suppose we have a regular expression R that accepts L(R). Then, we can
construct a NFA N such that L(N) = L(R).

We give an NFA for each of the basic regular expressions:

1. If R = ∅, then L(R) = ∅ is recognised by the NFA N =
(
{q0},Σ,q0,∅,δ

)
,

q0

2. If R = ε, then L(R) = {ε} is recognised by the NFA N =
(
{q0},Σ,q0,{q0},δ

)
,

Formal Languages | 12

CS259 2.9 Languages Recognised by Regular Expressions

q0

3. If R = a ∈ Σ, then L(R) = {a} is recognised by the NFA N =
(
{q0,q1},Σ,q0,{q1},δ

)
,

q0 q1
a

Then, given regular expressions R1 and R2 with NFAs N1 = (Q1,Σ,q1,F1,δ1) and N2 = (Q2,Σ,q2,F2,δ2)

q1

N1

q2

N2

accepting L(R1) and L(R2), respectively,

1. The language recognised by the concatenation R1 · R2 is recognised by the NFA N =
(
Q1 ∪

Q2,Σ,q1,F2 \F1,δ
)

formed by making the accepting states of R1 no longer accepting, then attaching
ε-transitions from the old accepting states to the initial state of R2:

q1

N1

q2

N2

ε

ε

ε

2. The language recognised by the union R1 + R2 is recognised by the NFA N =
(
Q1 ∪ Q2 ∪

{q0},Σ,q1,F2 ∪ F1,δ
)

formed by adding a new starting state q0 with ε-transitions to the previ-
ous start states:

Formal Languages | 13

CS259 Non-Regular Languages

q0

q1

N1

q2

N2

ε

ε

3. The language recognised by the Kleene star R∗
1 is recognised by the NFA N =

(
Q1∪{q0},Σ,q1,F1,δ

)
formed by adding a new starting state q0 that is also accepting – in order to accept the empty
string – with an ε-transition to the previous start state, then adding ε-transitions from the previous
accepting states to the start state – to allow for arbitrary concatenations of the R1 NFA:

q0 q1

N1

ε

ε

ε

ε

By induction, this construction extends to any regular expression. ■

3 Non-Regular Languages

3.1 The Myhill-Nerode Theorem
Because the change in state of a DFA is determined entirely by the current state and the next character,
a DFA is effectively memoryless. That is, if two different strings converge to the same state, then the
DFA will respond in precisely the same way to any further characters appended to them, so the two
initial strings are, with respect to this DFA, identical. This motivates our next definition.

Two strings x,y ∈ Σ∗ are distinguishable by a language L if there exists a string z ∈ Σ∗ such that x ·z ∈ L
and y · z /∈ L, or vice versa, and we call z the certificate or witness of the distinguishability of x and y.

If two strings x,y ∈ Σ∗ are not distinguishable by L, then we say they are indistinguishable, and we write
x ≡L y to denote this relation. Note that this relation is on the language L, and is independent from
any specific implementation in a particular DFA.

Furthermore, this relation forms an equivalence relation on L (i.e., it is transitive, reflexive, and sym-
metric), and we call the number of equivalence classes of L under ≡L the index of ≡L.

Formal Languages | 14

CS259 3.2 The Pumping Lemma for Regular Languages

Theorem (Myhill-Nerode). A language L is regular if and only if ≡L has finite index.

So, to prove a language is non-regular, we can find an infinite set of strings and show that they are
pairwise distinguishable by L, and hence ≡L has infinite index.

Example. Let L = {0n1n : n ∈ N} be a language over Σ = {0,1}. Then, the set
{
0i ∈ Σ∗ : i ∈ N

}
is

infinite, and two strings 0i and 0j with i ̸= j are distinguishable with 1i as witness. It follows that ≡L

has infinite index, and hence L is non-regular by Myhill-Nerode. △

Example. Let L = {0p : p prime} be a language over Σ = {0,1}.

Let i ̸= j and p be prime, and consider the sequence of integers

p+ 0(j − i)

p+ 1(j − i)

p+ 2(j − i)
...

p+ p(j − i)

Note that the first integer is p+0(j−i) = p, which is prime, and the final integer is p+p(j−i) = p(1+j−i),
which is composite. Let 1 ≤ k ≤ p be the least integer for which p + k(j − i) is composite. Then,
1p+(k−1)(j−i)−i is a certificate for the distinguishability of 1i and 1j :

1i · 1p+(k−1)(j−i)−i = 1p+(k−1)(j−i) ∈ L

1j · 1p+(k−1)(j−i)−i = 1p+k(j−i) /∈ L

So, every pair of elements of the infinite set
{
1i ∈ Σ∗ : i ∈ N

}
are distinguishable, so ≡L has infinite

index, and hence L is non-regular by Myhill-Nerode. △

Another way to show pairwise distinguishability is to order the infinite set of strings, (si)∞i=1, then show
that for all i, si is distinguishable from sj for all j > i.

Example. Let ni(s) denote the number of occurrences of the character i in a string s, and let L = {s ∈
Σ∗ : na(s) < nb(s)} be a language over Σ = {a,b}. Then, the set

{
ai ∈ Σ∗ : i ∈ N

}
is infinite, and two

strings ai and aj with i > j are distinguishable with bi+1 as witness. △

3.2 The Pumping Lemma for Regular Languages
Let M be a DFA. If there is a cycle in the state diagram of M traversed by a string c, then we may
traverse that cycle arbitrarily many times, and return to the same state. Again, because DFAs are
memoryless, traversing the cycle once is the same as traversing it 2 times, or 3 times, or n times. If that
cycle is reachable from the initial state, and can also reach an accepting state, this means that, given a
word s accepted by M whose run intersects this cycle, we may add as many copies of c in the middle of
s as we want, and the word will still be recognised by M .

That is, if there is a cycle reachable from the initial state that can also reach an accepting state in the
state diagram of the DFA M , then the language L(M) is infinite.

In fact, this is a complete characterisation of the DFAs that accept an infinite language: because DFAs
must have finitely many states, this is the only way an infinite language can arise.

Theorem 3.1. A language L = L(M) is infinite if and only if there is a cycle reachable from the initial
state that can also reach an accepting state in the state diagram of the DFA M .

Note that it must be the same cycle that is reachable from the initial state and can reach an accepting
state. For instance, the DFA M with state diagram

Formal Languages | 15

CS259 Grammars

q0
0,1

0
1

0

1

0

1

0

1
0

1

0

1

has both a cycle that is reachable from the start state, and a cycle that can reach an accepting state,
but these cycles do not coincide, and L(M) = {ε} is finite.

Lemma (Pumping Lemma). Let L be a regular language. Then, there exists an integer p ≥ 1 (the
pumping length), such that for every string s ∈ L with length |s| ≥ p, there exists a decomposition
s = x · y · z such that

• |y| ≥ 1;

• |xy| ≤ p;

• for all n ≥ 0, x · yn · z ∈ L.

Example. Let L = {0n1n : n ∈ N} be a language over Σ = {0,1}. Suppose there exists p ≥ 1 such that
the string s = 0p1p with length |s| = 2p ≥ p has a decomposition s = x · y · z satisfying |x · y| ≤ p and
|y| ≥ 1. From the former condition, y consists of only instances of 0; and from the latter, y contains at
least one instance of 0. Pumping y to obtain x · y2 · z adds more 0s to the string without adding any 1s,
so x · y2 · z /∈ L, contradicting the pumping lemma, and hence L is non-regular. △

Note that the pumping lemma is not biconditional; there exist non-regular languages that satisfy the
pumping lemma, so the pumping lemma cannot be used to show that a language is regular.

4 Grammars

Ordinary languages not only contain words, but also have particular rules, called a grammar, that dictate
how they can fit together. For instance, we could have a grammar fragment that says that sentences
may be composed of a noun phrase and a verb phrase, which can each then be further decomposed:

Sentence

Noun phrase Verb phrase

Article Noun Verb Noun phrase

Article Noun

the cat broke the vase

so we have derived this sentence from the given grammar.

A grammar G is a 4-tuple (V,Σ,R,S), consisting of

• A finite set V of variables or non-terminal symbols;

• a finite set Σ, the alphabet, of terminal symbols;

Formal Languages | 16

CS259 Grammars

• a finite set R of substitution rules or productions, where a substitution rule is a string of the form

α → β

where α,β ∈ (V ∪ Σ)∗, and α ̸= ε.

• and an initial variable S ∈ V .

Example. In the above tree, “noun phrase” is a variable, while “the” is a terminal symbol, and “Article →
the” is a substitution rule. △

If there are multiple substitution rules with the same term on the left, i.e. α → β and α → γ, then we
may abbreviate this by writing α → β | γ.

To generate a string from a given grammar G, we start with the initial variable, then, given a production
α → β, replace an instance of α with β, and repeat, until there are only terminal symbols remaining.

The sequence of substitutions to generate a string from a grammar is then called a derivation.

Example. Let G =
(
{S,T},{0,1},R,S

)
be a grammar, where

R =

{
S → TT,

T → 0T1 | ε

}
Some derivations are as follows:

S =⇒ TT =⇒ 0T1T =⇒ 01T =⇒ 010T1 =⇒ 0101

S =⇒ TT =⇒ 0T1T =⇒ 00T11T =⇒ 0011T =⇒ 0011

S =⇒ TT =⇒ Tε =⇒ 0T1 =⇒ 01

S =⇒ TT =⇒ Tε =⇒ ε

△

A derivation is a left-most derivation if at each step, a production is applied to the left-most variable in
the expression; right-most derivations are defined similarly.

Example. The first derivation in the previous example is a left-most derivation, and the last derivation
is a right-most derivation. △

For any two strings α,β ∈ (V ∪ Σ)∗, we say that

• α directly yields β and write α =⇒ β if α may be rewritten as β by applying a single production
rule once;

• α yields β, or β is derived from α and write α
∗

=⇒ β if α may be rewritten as β by applying a
finite sequence of productions.

Given a grammar G, we then define the language L(G) to be the set of all strings generated by G:

L(G) := {s ∈ Σ∗ : s is derivable from S using production rules in G}

= {s ∈ Σ∗ : S
∗

=⇒ s}

Example. Let G = ({S},{0,1},R,S) be a CFG, where

R = {S → S}

Then, we have the (unique) production

S ⇒ S ⇒ S ⇒ S ⇒ · · ·

so G does not generate any strings, and hence L(G) = ∅. △

Formal Languages | 17

CS259 4.1 Parse Trees

Example. Let G =
(
{S},{0,1},R,S

)
be a grammar, where

R =

{
S → 0S1,

S → ε

}

or equivalently,
R = {S → 0S1 | ε}

Then, we may generate the strings

S ⇒ 0S1 ⇒ 01

S ⇒ 0S1 ⇒ 00S11 ⇒ 0011

S ⇒ 0S1 ⇒ 00S11 ⇒ 000S111 ⇒ 000111
...

S ⇒ 0S1 ⇒ · · · ⇒ 0nS1n ⇒ 0n1n

so L(G) = {0n1n : n ∈ N}. △

Evidently, grammars can generate non-regular languages.

4.1 Parse Trees
We can represent a derivation with a parse tree, like the one at the beginning of this section.

Example. Let G =
(
{S},{0,1},R,S

)
be a grammar, where

R = {S → 0S1S | ε}

Then, the parse tree for one possible left-most derivation is:

S

0 S 1 S

0 S 1 S ε

0 S 1 S ε

ε ε

Then, reading the terminals of the tree with an inorder depth first search, we obtain the string

000ε1ε1ε1ε = 000111

also called the yield of the tree. △

Formal Languages | 18

CS259 4.2 Right/Left-Linear Grammars

Let G =
(
{S},{+,× ,0,1, . . . ,9},R,S

)
be a CFG, where

R =

S → S + S,

S → S × S,

S → (S)

S → 0 | 1 | · · · | 9

Consider the following pair of parse trees:

S

S × S

S + S 3

1 2

S

S + S

1 S × S

2 3

These trees both yield the string 1 + 2× 3, so there isn’t a unique parse tree for this string.

A grammar G is ambiguous if it can generate the same string with multiple parse trees, or equivalently,
if the same string can be derived from two left-most derivations.

Some ambiguous grammars G may be rewritten as an equivalent unambiguous grammar H, with L(G) =
L(H). However, not all grammars admit an unambiguous equivalent. Such grammars are called inher-
ently ambiguous grammars.

The problem of determining whether a grammar is ambiguous or not is undecidable.

4.2 Right/Left-Linear Grammars
A linear grammar is a grammar that has at most one variable in the right side of each substitution rule.

Example. The grammar G =
(
V,{0,1},R,S

)
with rules

R =

{
S → 0S1,

S → ε

}

is linear, and generates the language L(G) = {0n1n : n ∈ N}. △

As demonstrated by this example, linear grammars may accept some non-regular languages. However,
we may add a further restriction:

A right-linear grammar is a grammar G = (V,Σ,R,S) where each rule is of the following form

• A → xB;

• A → x;

where A,B ∈ V are variables and x ∈ Σ∗ is a string of terminals. A left-linear grammar is defined
similarly, with the first production rule replaced by A → Bx.

Formal Languages | 19

CS259 4.2 Right/Left-Linear Grammars

Any derivation of a word from a strict right-linear grammar is of the form

S =⇒ a1A1 =⇒ a1a2A2 =⇒ · · · =⇒ a1a2 · · · an

where (Ai)i ⊆ V and (ai)i ⊆ Σ∗; that is, strings grow towards the right as a derivation progresses.

It turns out that we can strengthen this restriction even further (and it will be convenient for us to do
so) without changing the class of languages the grammar accepts:

A strictly right-linear grammar is a grammar G = (V,Σ,R,S) where each rule is of the following form

• A → xB, where A ∈ V , x ∈ Σ ∪ {ε};

• A → x.

Strings still grow to the right during a derivation, but the productions now only add a single symbol at
a time.

Strightly (right/left)-linear grammars cannot accept all context-free languages. In fact, they accept
precisely the regular languages.

Example. Consider the DFA

A

B

C

D

a

b a

b

a,b

a

b

We construct the associated strightly right-linear grammar. We represent states as variables, with the
starting variable representing the starting state, and the alphabet should be the same, so the grammar
will be of the form G =

(
{A,B,C,D},{0,1},R,A

)
.

Then, productions should match up with the outgoing transitions, and whenever we have an accepting
state, we allow a production of the empty string from the variable representing that state.

For instance, at the initial state A, we have transitions δ(A,0) = C and δ(A,1) = B, so we have
productions

A → aC

A → bB

A is also an accepting state, so we also have

A → ε

For the other states, we have

B → aD

B → bA

C → aC

C → bC

Formal Languages | 20

CS259 4.2 Right/Left-Linear Grammars

D → aD

D → bC

D → ε

Note that all the production rules are of the required form for this grammar to be right-linear.

The only way to remove a variable is by replacing it with ε, but by construction, this happens only when
the current state is an accepting state. Thus, this grammar generates precisely the language that the
DFA recognises. △

We can also go the other way and construct a DFA given any strictly right-linear grammar.

Example. Consider the strictly right-linear grammar G =
(
{A,B,C},{0,1},R,A

)
, where

R =

A → 0B | 1A | ε,
B → 0C | 1A,

C → 0C | 1C

The process is largely the same as the previous in reverse: we introduce a new state for each variable, add
transitions δ(A,b) = C for each production A → bC, and mark any variables with productions A → ε as
accepting states:

A B C

0

1

0

1

0,1

△

Together, these constructions show more generally that:

Theorem 4.1. A language L is accepted by a strict right-linear grammar if and only if L is regular.

Proof. Let L = L(M) for a DFA M = (Q,Σ,q0,F,δ). Then, L is recognised by the right-linear grammar
G = (Q,Σ,R,q0), where

R =

{
q → ap ∀q,a ∈ Q : δ(q,a) = p

q → ε ∀q ∈ F

}
The reverse construction is analogous: given a strictly right-linear grammar G = (V,Σ,R,S), introduce
a state for each variable A ∈ V ; for each rule A → bC with A,C ∈ V , b ∈ Σ, define δ(A,b) = C; and for
each rule A → ε, make the state A an accepting state. ■

We can also construct the strictly left-linear grammar with a similar modified method:

Example. Consider the same DFA as in the previous example:

Formal Languages | 21

CS259 4.3 Chomsky Hierarchy of Grammars

A

B

C

D

a

b a

b

a,b

a

b

To construct the associated strictly left-linear grammar, we proceed in much the same way, representing
states as variables, but this time, we start at the final state, and represent incoming transitions with
production rules, and finally add a production for the empty string only at the starting state.

The first problem is that there are multiple final states, but a grammar only allows one starting variable.
We resolve this analogously to adding ε-transitions in an NFA: add a new state q∗ and add productions
of the form q∗ → q for every final state q.

So, in this example, we have

q∗ → A

q∗ → D

(Note that this is of the required form, since A = Aε.)

Then, we add production rules corresponding to incoming transitions:

A → ε | Bb

B → Ab

C → Aa | Ca | Cb | Db

D → Ba | Da

This defines the required grammar G =
(
{q∗,A,B,C,D},{a,b},R,q∗

)
. △

The reverse construction is again similar. Thus, we have:

Theorem 4.2. A language L is accepted by a strictly left-linear grammar if and only if L is regular.

Proof. Let L = L(M) for a DFA M = (Q,Σ,q0,F,δ). Then, L is recognised by the strictly left-linear
grammar G = (Q ∪ {q∗},Σ,R,q∗), where

R =

q0 → ε

p → qa ∀q,a ∈ Q : δ(q,a) = p

q∗ → q ∀q ∈ F

Conversely, given a strictly left-linear grammar G = (V,Σ,R,S), introduce a state for each variable
A ∈ V \ S; for each rule A → Bc with A,B ∈ V and c ∈ Σ, define δ(B,c) = A; and for each rule S → A,
make the state A an accepting state. ■

4.3 Chomsky Hierarchy of Grammars
As we have seen previously, grammars can generate a wider class of languages than just regular languages.
We can precisely classify when this happens in terms of constraints on what kind of productions are
allowed in a grammar.

Formal Languages | 22

CS259 Context-Free Languages

Let G = (V,Σ,R,S) be a grammar, A,B ∈ V be variables, α,β,γ,δ ∈ (V ∪ Σ)∗ be strings of arbitrary
symbols, and x ∈ Σ∗ be a string of terminals.

Grammar Languages Recognising Automata Constraints

Type-3 Regular/(Right/Left)-Linear Finite automata
{
A → x

A → xB

}
(right regular)

or{
A → x

A → Bx

}
(left regular)

Type-2 Context-free Non-deterministic
pushdown automata

A → α

Type-1 Context-sensitive Linear-bounded
non-deterministic
Turing machine

αAβ → αγβ

Type-0 Recursively enumerable Turing machine α → β (α ̸= ε)

Each type is a proper subset of the next, so there are recursively enumerable languages that are not
context-sensitive, context-sensitive languages that are not context-free, and context-free languages that
are not regular.

We call a type-2 grammar a context-free grammar (CFG), and the language generated by a CFG is called
a context-free language (CFL).

5 Context-Free Languages

5.1 Pushdown Automata
A (non-deterministic) pushdown automaton (PDA) is a 6-tuple P = (Q,Σ,Γ,δ,q0,F) consisting of

• a finite set Q of states;

• a finite set Σ, the input alphabet;

• a finite set Γ, the stack symbol alphabet;

• a transition function δ : Q× Σε × Γε → P(Q× Γε);

• an initial state q0 ∈ Q;

• a set F ⊆ Q of accepting states.

A PDA is effectively an NFA equipped with some limited memory in the form of a stack, to which we
can push symbols from Γ and pop with the transition function. We will also usually assume that Γ ⊇ Σ
so we can store any read symbols on the stack.

As we will see, this additional memory allows us to recognise a strictly larger class of languages than
NFA/DFA, such as the non-regular palindrome languages L = {wwrev : w ∈ Σ∗}.

Also note that we are working with non-deterministic PDA. We will not discuss them in detail here,
but unlike NFAs and DFAs which are equivalent, deterministic pushdown automata are provably less
expressive than their non-deterministic counterparts.

Formal Languages | 23

CS259 5.2 Languages Recognised by PDA

As usual, we may represent a PDA as a state transition diagram; but now, the transitions are controlled
not only by the currently read symbol, but also by the state of the stack. The labels in a state diagram
are given in the form a,β → γ, where a ∈ Σε and β,γ ∈ Γε, where the arrow indicates the stack operation
of popping β then pushing γ.

X Y
a,β → γ

That is, when we are in the state S, this transition may only be traversed if the current read symbol is
a and the top element of the stack is β.

In terms of the transition function, the label a,β → γ from a state X to a state Y represents the element
(Y,γ) ∈ δ(X,a,β).

Any or all of a, β, and γ may be the empty string: if a = ε, then the transition consists only of the
stack operation β → γ, and it may be traversed without reading any symbols from the input string; if
β = ε, then the stack operation just pushes γ to the stack, as popping the empty string effectively does
not change the state of the stack, since we may assume infinitely many empty strings are on top of the
stack; and if γ = ε, the stack operation just pops β from the stack, as pushing the empty string again
does not change the state of the stack.

We also write a,β → γ1 . . . γn to denote pushing multiple symbols onto the stack (note that γn is pushed
first, and γ1 last, in this notation). This can be converted into an ordinary transition via the provision
of some new states such that the intermediary transitions only push one of the γi at a time.

Because the stack may always be regarded as having infinitely many empty strings on top, it is difficult
to determine whether the stack is empty or not, so for convenience, we also often include the string $
in Γ which we immediately push on to the stack at the beginning of a computation using the transition
ε,ε → $. From then on, we can use the $ symbol to detect when the stack is intended to be “empty”, and
we can use the transition ε,$ → ε to fully empty the stack.

5.2 Languages Recognised by PDA
Given a PDA P = (Q,Σ,Γ,δ,q0,F), we say that P accepts or recognises a string s1 · · · sk = s ∈ Σ∗ if there
exists a sequence (ri)

k
i=1 ⊆ Q of states and a sequence (σi)

k
i=1 ⊆ Γ of stack symbols such that

• r0 = q0;

• rk ∈ F ;

• For all i, (ri,β) ∈ δ(xi−1,si,α) where ri−1 = α · t and ri = β · t for some α,β ∈ Γε, t ∈ Γ∗.

Example. Consider the CFG G =
(
{S},{0,1},R,S

)
where

R =

{
S → 0S1

S → ε

}
which generates the language

L(G) = {0n1n : n ≥ 0}

We construct a PDA that recognises this language as follows.

First, push the empty stack symbol $ to the stack with ε,ε → $ from the initial state q0 to a state q1.
Then, whenever we read a 0 from the string, push it on to the stack with 0,ε → 0, and we can repeat
this arbitrarily many times, so this transition is a loop on q1.

When we read a 1 from the string for the first time, we pop a 0 from the stack with 1,0 → ε and move to
a new state q2, as we we will not allow any more 0s to be read from the input string. In this new state,
we can then read 1s from the string and pop 0s from the stack.

Formal Languages | 24

CS259 5.2 Languages Recognised by PDA

If at any point, the stack is empty (i.e. we can read the $ symbol), we can move to a final accepting
state q3.

q0 q1 q2 q3
ε,ε → $ 1,0 → ε

0,ε → 0

ε,$ → ε

1,0 → ε

△

We claim that PDA recognise precisely the class of context-free languages. To show this, we will show
that every CFG can be converted into a PDA and vice versa.

Lemma 5.1. If a language L is context-free, then there exists a PDA that recognises L.

Proof. Since L is context-free, there is a CFG G = (V,Σ,R,S) such that L(G) = L.

We can decide whether a given string T is derivable from some fixed grammar using the following
algorithm:

1. Push S$ on to the stack.

2. While the symbol on the top of the stack is not $:

• If the top of the stack is a variable A, pop A and non-deterministically select a grammar rule
for A from R, and push the production to the stack.

• Otherwise, the top of the stack is a terminal a. Read the next input symbol in T and check
if it equals a. If so, pop a from the stack and continue. Otherwise, reject T .

3. Once the top of the stack is $, accept.

We implement this algorithm as a PDA as follows:

qs

qℓ

qa

ε,ε → S$

ε,$ → ε

ε,A → β
a,a → ε

where the loop in the middle has a transition rule of the form ε,A → w for every terminal A ∈ V and
every production A → β in R; and a transition of the form a,a → ε for every terminal a ∈ A.

Note that we are implicitly using more than just 3 states when pushing multiple symbols to the stack.
The vertical transitions represent steps 1 and 3 of the algorithm above, and the self-loops on qℓ simulating
the grammar represents step 2.

Formal Languages | 25

CS259 5.2 Languages Recognised by PDA

The first kind of loops of the form ε,A → w correspond to a production being applied to the left-most
variable A in a derivation. The second kind of loop a,a → ε correspond to matching the input T with
the currently generated string. It is safe to do this incrementally, since a terminal is never replaced in a
derivation, so if the first symbol is a terminal at any point, it will always be the same terminal at any
point onwards in the derivation. ■

Example. Consider the CFG G =
(
{S},{0,1},R,S

)
where

R =

{
S → 0S1

S → ε

}

which generates the language
L(G) = {0n1n : n ≥ 0}

The corresponding PDA is given by

qs

qℓ

qa

ε,ε → S$

ε,$ → ε

ε,S → 0S1
ε,S → ε
0,0 → ε
1,1 → ε

△

Before we prove the converse, we define a convenient normal form of PDA.

A normalised PDA is a PDA such that

• N has a single accept state;

• N empties its stack before accepting;

• Each transition does exactly one of the following;

– Push a symbol onto the stack;

– Pop a symbol from the stack.

Every PDA can be converted into a normalised PDA:

• Add a new accept state qaccept and add transitions of the form ε,$ → ε from the old accept states
to qaccept;

• For every old accepting state and every stack symbol γ ∈ Γ, add a loop of the form ε,γ → ε to
empty the stack;

• For every transition with both stack instructions,

Formal Languages | 26

CS259 5.2 Languages Recognised by PDA

a,β → γ

add a new intermediary state with transitions

a,β → ε ε,ε → γ

For transitions with no stack instructions,

a,ε → ε

instead push and pop a new symbol # on the new transitions:

a,ε → # ε,# → ε

So, we may assume without loss of generality that all of our PDA are in normalised form.

Lemma 5.2. If M is a PDA, then L(M) is a context-free language.

Proof. By the above, there exists a normalised PDA N = (Q,Σ,Γ,δ,q0,{qa}) such that L(N) = L(M).
We construct a CFG G = (V,Σ,R,S) as follows.

For each pair of states p,q ∈ Q, add a variable Ap,q to V . If we can guarantee that Ap,q generates
precisely the set of strings that take us from p (starting with an empty stack) to q (ending with an empty
stack), then we are done, as S := Aq0,qa would generate precisely the language accepted by N .

To achieve this, we define three types of rules.

1. For each state p ∈ Q, add the rule
Ap,p → ε

since not reading any characters is a valid path from p to p with empty stacks.

2. For all states p,q,r ∈ Q, add the rule

Ap,q → Ap,rAr,q

since travelling from p to r with empty stacks, then r to q with empty stacks, is a valid path from
p to q with empty stacks;

3. For all states p,q,r,s ∈ Q and stack symbol u ∈ Γ and (possibly empty) letters a,b ∈ Σε, if
(r,u) ∈ δ(p,a,ε) and (q,ε) ∈ δ(s,b,u), add the rule

Ap,q → aArsb

since if r is reachable from p by pushing u to the stack, and q is reachable from s by popping u,
then concatenating with any string w given by Ar,s gives a path from p with empty stack to q with
empty stack, since by construction, w leaves the stack unchanged, so the u is still available to be
popped during the final transition.

a,ε → u w ∈ Ar,s b,u → ε

■

The previous two results imply:

Formal Languages | 27

CS259 5.3 Chomsky Normal Form

Theorem 5.3. A language L is context-free if and only if there is a PDA recognising L.

5.3 Chomsky Normal Form
A CFG G = {V,Σ,R,S} is in Chomsky Normal Form (CNF) if every substitution rule in R is one of the
following form:

• S → ε;

• A → s, where A ∈ V , s ∈ Σ;

• A → PQ, where A ∈ V , P,Q ∈ V \ {S}.

Note that every parse tree generated by a CFG in CNF is a binary tree: every production either splits
a variable into two variables, or replaces it with a terminal, creating a leaf node.

This also implies that every string of length n can be derived in exactly 2n − 1 production steps, since
it requires exactly n− 1 steps to produce n variables from S, and n more steps to replace the variables
with terminals.

Theorem 5.4. Every CFL is generated by a CFG in CNF.

Proof. Given a CFG G = {V,Σ,R,S}, we convert G to CNF via the following procedure:

• Eliminate the start symbol from right sides:

Add a new initial variable S0 and a substitution rule S0 → S to the old initial variable. This does
not change the grammar’s produced language, and the new initial variable S0 will not occur on
any rule’s right side.

• Eliminate rules with non-solitary terminals

To eliminate a rule where the right side is some combination of terminals (ai)i and variables
(Xj)j ̸= ∅,

A → (an | Xn)n

introduce for each such terminal ai a new variable Nai
and a new rule Nai

→ ai, then replace the
rules

A → (an | Xn)n

with
A → (Nan | Xn)n

That is, replace any instance of ai with Nai .

• Eliminate rules with more than 2 variables

Replace each rule where the right side is some combination of k ≥ 3 variables

A → X1 · · ·Xk

by introducing new variables (Ai)
n−2
i=1

A → X1A1

A1 → X2A2

A2 → X3A3

...

An−3 → Xn−2An−2

An−2 → Xn−1Xn

(Similar to currying.)

Formal Languages | 28

CS259 5.3 Chomsky Normal Form

• Eliminate ε-rules

Remove any rules of the form A → ε for A ̸= S0. Then, for each rule containing n occurrences of
A, add 2n new copies of that rule with each possible combination of A replaced by ε (i.e. removed).
Similar to inline expansion or β-reduction.

For instance, if we had rules A → ε and R → aAbAcAd, then we would remove this two rules and
add in

R → aAbAcAd

R → aAbAcd

R → aAbcAd

R → aAbcd

R → abAcAd

R → abAcd

R → abcAd

R → abcd

Directly remove any ε-rules introduced by this step.

• Eliminate unit rules

A unit rule is a rule of the form
A → B

for some variables A,B ∈ V .

To remove a unit rule A → B, for each rule

B → Λ1 · · ·Λn

where (Λi)
n
i=1 ⊆ V ∪ Σ is some combination of variables and terminals, add a new rule

A → Λ1 · · ·Λn

unless this is a unit rule already removed.

■

Example. Consider a grammar with production rules

S → ASB

A → aAS | a | ε
B → SbS | A | bb

We will convert this into CNF.

Start by eliminating the start variable S:

S0 → S

S → ASB

A → aAS | a | ε
B → SbS | A | bb

Formal Languages | 29

CS259 5.3 Chomsky Normal Form

Then, we eliminate the terminals in A → aAS, B → SbS and B → bb:

S0 → S

S → ASB

A → NaAS | a | ε
B → SNbS | A | NbNb

Na → a

Nb → b

Now, we eliminate the rules with 3 or more variables, S → ASB, A → NaAS, and B → SNbS:

S0 → S

S → AV1

A → NaV2 | a | ε
B → SV3 | A | NbNb

Na → a

Nb → b

V1 → SB

V2 → AS

V3 → NbS

Now, we eliminate the ε-rule A → ε

S0 → S

S → AV1 | V1

A → NaV2 | a
B → SV3 | A | NbNb | �ε
Na → a

Nb → b

V1 → SB

V2 → AS | S
V3 → NbS

Now, we eliminate the unit rules S → V1, B → A, and V2 → S:

S0 → S

S → AV1 | SB
A → NaV2 | a
B → SV3 | NbNb | NaV2 | a
Na → a

Nb → b

V1 → SB

V2 → AS | AB1 | SB
V3 → NbS

△

Formal Languages | 30

CS259 5.4 Cocke–Younger–Kasami (CYK) Parsing

5.4 Cocke–Younger–Kasami (CYK) Parsing

The CYK algorithm is a Θ(n3 · |G|) time dynamic programming algorithm for the bottom-up parsing of
a CFG in CNF.

We build up a lower triangular table with width and height equal to the length of the word w we are
parsing. For instance, if w = x1x2x3x4x5x6, then the table is initialised as:

w = x1

1

x2

2

x3

3

x4

4

x5

5

x6

6

Each entry M [i,j] will contain the set of variables that can generate the substring xjxj+1 · · ·xi+j−1 of
w. Note that the row number corresponds to the length of the substring.

For instance, M [3,2] contains the set of variables that can generate the substring x2x3x4. Visually, this
is the substring in the triangular “cone” under the entry:

w = x1

1

x2

2

x3

3

x4

4

x5

5

x6

6

x1 x5 x6x2 x3 x4

M [3,2]

We start from the bottom row, and recursively fill in the table by considering how each substring can be
constructed by concatenating previously constructed strings. Then, the unique cell in the top row will
contain the starting variable S if and only if w can be derived from the grammar.

Formal Languages | 31

CS259 5.4 Cocke–Younger–Kasami (CYK) Parsing

Example. Consider the CFG G =
(
{S,A,B,C},{a,b},R,S

)
where

R =

S → AB | BC,

A → BA | a,
B → CC | b,
C → AB | a

Note that G is in CNF, as required.

We will parse the string w = baaba. The table is initialised as:

1

2

3

4

5

b a a b a

The first row is simple to fill in, as the substrings consist of single terminals:

1

2

3

4

5

b a a b a

B A,C A,C B A,C

Now, consider the first cell on the second row, M [2,1]. This corresponds to the substring ba.

This substring can be obtained by concatenating any variable that produce b followed by any variable
that produces a, which we have already computed in the cells contained in the cone below this cell as
{B} and {A,C}.

We have the possible concatenations BA and BC. BA is produced by A, and BC is produced by S, so
M [2,1] contains S,A.

We continue similarly for the rest of the row. For the second cell, we have concatenations AA, AC, CA,
and CC. CC can be produced by B, and the others cannot be produced, so this cell contains B. The
third cell has concatenations AB and CB, which are produced by C and S, respectively. The fourth cell
has concatenations BA and BC, which are produced by A and S, respectively.

Formal Languages | 32

CS259 5.4 Cocke–Younger–Kasami (CYK) Parsing

1

2

3

4

5

b a a b a

B A,C A,C B A,C

S,A B S,C S,A

Moving onto the third row, the first cell M [3,1] corresponds to the substring baa.

This can be produced by concatenating b with aa, or ba with a. From the previously computed cells in
the cone below M [3,1], we already know how to produce these substrings:

• We can produce b with B (M [1,1]) and aa with B (M [2,2]), so the concatenations are BB;

• We can produce ba with S,A (M [2,1]) and a with A,C (M [1,3]), so the concatenations are SA, SC,
AA, and AC.

No productions generate any of these, so M [3,1] is empty.

The next cell corresponds to the substring aab, which can be produced by concatenating a with ab, or
aa with b.

• We can produce a with A,C and ab with S,C, so the concatenations are AS, AC, CS, and CC;

• We can produce aa with B and b with B, so the concatenations are BB.

Only CC can be produced (by B), so M [3,2] contains B.

The next cell corresponds to the substring aba, which can be produced by concatenating a with ba, or
ab with a.

• We can produce a with A,C and ba with S,A, so the concatenations are AS, AA, CS, and CA;

• We can produce ab with S,C and a with A,C, so the concatenations are SA, SC, CA, and CC.

Only CC can be produced (by B), so M [3,3] contains B.

1

2

3

4

5

b a a b a

B A,C A,C B A,C

S,A B S,C S,A

∅ B B

On the fourth row, the first cell represents the substring baab, which can be constructed as:

Formal Languages | 33

CS259 5.4 Cocke–Younger–Kasami (CYK) Parsing

• b+ aab, produced by B and B, so the concatenations are BB;

• ba+ ab, produced by S,A and S,C, so the concatenations are SS, SC, AS, AC;

• baa+ b, produced by ∅ and B, so there are no concatenations.

(The pattern in the table should now be more apparent: we use the entries on each “leg” of the cone,
starting from the bottom of one, and the top of the other.)

None of these concatenations are producible, so M [4,1] is empty.

The second cell represents the substring aaba, which can be constructed as

• a+ aba, produced by A,C and B, so the concatenations are AB, CB;

• aa+ ba, produced by B and S,A, so the concatenations are BS, BA;

• aab+ a, produced by B and A,C, so the concatenations are BA, BC.

AB can be produced by S and C, BA by A, and BC by S, so M [4,2] contains S, A, and C:

1

2

3

4

5

b a a b a

B A,C A,C B A,C

S,A B S,C S,A

∅ B B

∅ S,A,C

Finally, the unique cell at the top represents the entire string, which can be constructed as

• b+ aaba, produced by B and S,A,C, giving BS, BA, BC;

• ba+ aba, produced by S,A and B, giving SB, AB;

• baa+ ba, produced by ∅ and S,A, so no concatenations;

• baab+ a, produced by ∅ and A,C, so no concatenations.

BA can be produced by A, BC by S, and AB by S and C, so M [5,1] contains S, A, and C:

Formal Languages | 34

CS259 5.4 Cocke–Younger–Kasami (CYK) Parsing

1

2

3

4

5

b a a b a

B A,C A,C B A,C

S,A B S,C S,A

∅ B B

∅ S,A,C

S,A,C

S is in the cell on the top row, so w = baaba can be generated by this grammar. △

We can also recover the parse tree from the diagram by connecting non-empty entries along the legs of
the cones.

Example. Consider the CFG G =
(
{S,T,X,A,B},{a,b},R,S

)
where

R =

S → AB | XB | ε,
T → AB | XB,

X → AT,

A → a,

B → b

with the following CYM table parsing the word aaabbb:

1

2

3

4

5

6

a a a b b b

A A A B B B

∅ ∅ T ∅ ∅

∅ X ∅ ∅

∅ T ∅

X ∅

S

Then, the parse tree is given by:

Formal Languages | 35

CS259 Non-Context-Free Languages

1

2

3

4

5

6

a a a b b b

∅ ∅ ∅ ∅

∅ ∅ ∅

∅ ∅

∅

△

6 Non-Context-Free Languages

6.1 The Pumping Lemma for Context-Free Languages
Recall the pumping lemma for regular languages:

Lemma (Pumping Lemma). Let L be a regular language. Then, there exists an integer p ≥ 1 (the
pumping length), such that for every string s ∈ L with length |s| ≥ p, there exists a decomposition
s = x · y · z such that

• |y| ≥ 1;

• |xy| ≤ p;

• for all n ≥ 0, x · yn · z ∈ L.

The intuition was that if an input string is too long, then it must loop somewhere inside the DFA.

A similar result holds for context-free languages, in that if a derived string is too long, it must repeat a
variable somewhere in its parse tree. Similarly to before we can generate an infinite set of strings in the
language by pumping this repeated variable:

Suppose we repeat a variable R, and that the derivation between the first and second R yields a string
that starts with a string v and ends with a string y.

u v x y z

T

R

R

Then, if we repeat R again, the derivation will repeat v and y:

Formal Languages | 36

CS259 6.1 The Pumping Lemma for Context-Free Languages

u

v

v

x y

y z

T

R

R

R

We can also remove the repeated R:

u

x

z

T

R

Lemma 6.1 (Pumping Lemma). Let L be a context free language. Then, there exists an integer p ≥ 1
(the pumping length) such that for every string s ∈ L with length |s| ≥ p, there exists a decomposition
s = u · v · x · y · z such that

• |vy| ≥ 1;

• |vxy| ≤ m;

• for all n ≥ 0, u · vn · x · yn · z ∈ L.

Proof. Let G = (V,Σ,R,S) be a CFG, and suppose that the length of the longest string in the right side
of a production rule in R is b. Then, any node in a parse tree yielding a string in L(G) has at most b
children. If the height of the tree is h, then it has at most bh leaves, as each layer can only have b times
as many nodes as the previous layer.

How long must a string be such that a variable is repeated on some root to leaf path of any parse tree
of this string?

We claim that p := b|V |+1 is sufficient. Indeed, the parse tree of such a word must have b|V |+1 leaves, so
the tree must have height at least |V |+ 1. But, there are only |V | variables, so one must repeat.

Take the smallest parse tree for the string w = uvxyz. If |vy| ̸≥ 1, then v = y = ε, and the section of
the parse tree between the two Rs don’t contribute anything, so w = uxz, and we have an even smaller
parse tree for w, contradicting the minimality of the first tree.

u ε x ε z

T

R

R

u

x

z

T

R

Formal Languages | 37

CS259 6.2 Finiteness of Context-Free Languages

If |vxy| > p, then the subtree rooted at the first R is itself long enough to have a repeated variable on a
root to leaf path. So, we can split x into x = u′x′y′, so w = (uv)v′x′y′(yz), which is still of the required
form, but the middle substring has now decreased in length. We can then repeat this process until the
middle substring has length at most p. ■

Example. Consider the language
L = {anbncn : n ≥ 0}

Suppose that L is context-free, and let p be the pumping length given by the pumping lemma. Take the
string w = apbpcp ∈ L. Clearly, |w| ≥ m.

Take an arbitrary decomposition w = uvxyz with |vxy| ≤ p and |vy| ≥ 1.

Since |vy| ≥ 1, v and y contain at least 1 symbol from {a,b,c}. Because the middle of w contains p many
bs and |vxy| ≤ p, vxy contains at most 2 of the symbols. So, if we pump vxy 0 times, uv0xy0z will lose
some number of only 2 of the characters. Hence uv0xy0z /∈ L, and L is not context-free. △

Example. Consider the language
L =

{
xx : x ∈ {0,1}∗

}
Suppose that L is context-free, and let p be the pumping length given by the pumping lemma. Take the
string w = 0p+11p+10p+11p+1 ∈ L. Clearly, |w| ≥ p.

Take an arbitrary decomposition w = uvxyz with |vxy| ≤ p and |vy| ≥ 1.

If we pump w 0 times, we obtain uv0xy0z = 0α1β0γ1δ. Because |vxy| ≤ p, vxy can intersect at most
two adjacent sections of continguous 1s or 0s in w. If α and β or γ and δ are changed, then only one
half of w = ωω has changed, so uv0xy0z /∈ L. If β and γ are changed, then we have changed the number
of 1s in the first ω, and/or the number of 0s in the second. In any case, uv0xy0z /∈ L, so L is not
context-free. △

6.2 Finiteness of Context-Free Languages
If L is a context-free language that has a string longer than the pumping length p, then the pumping
lemma allows us to pump this string to generate infinitely many strings.

The converse also holds: if L contains no strings of length longer than p, then L is finite. In particular,
it is also regular.

We also have that if L contains even one string of length longer than p, then we also have a bound on the
maximal length of a shortest string as follows. Given any arbitrary string w, the pumping lemma gives
a decomposition w = uvxyz with |vxy| ≤ p and |vy| ≥ 1. In particular, |vy| is at most p when x = ε.
So, pumping w down reduces its length by p. Repeating this process will eventually return a string with
length between p and 2p− 1.

6.3 Closure Properties of Context-Free Languages
Recall (§2.2) that regular languages are closed under

• Intersection;

• Union;

• Concatenation;

• Complementation;

• Kleene star.

Formal Languages | 38

CS259 Recursively Enumerable Languages

The proof for intersections was to construct a DFA that simulated the two original DFAs in parallel, and
accepting if both original DFAs accepted.

However, simulating a pair of PDAs using one PDA would require us to simulate two stacks with just
one stack. This is provably impossible, and context-free languages are not closed under intersection.

Example. Consider the following CFLs:

L1 = {aibicj : i,j, ≥ 0}
L1 = {aibjcj : i,j, ≥ 0}

Then, L1 ∩ L2 = {anbncn : n > 0} is non-context-free. △

However, the intersection of a context-free language and a regular language is context-free, since we then
only have one stack to simulate (i.e. just use the stack).

In contrast, for unions, we can use non-determinism to our advantage. Unlike for intersections, we only
need to simulate one stack at a time in a union – not both simultaneously. We add a new start state for
the PDA and an ε-transition to the start states of the previous PDAs. Then, this new PDA will accept
if either of the previous PDAs accept.

Other similar construction works for grammars:

• Union:

If L1 = L(G1) and L2 = L(G2) with G1 = (V1,Σ1,R1,S1) and G2 = (V2,Σ1,R2,S2), then L1 ∪L2 is
generated by the grammar

G =
(
V1 ⊔ V2, Σ1 ∪ Σ2, R1 ∪R2 ∪ {S → S1 | S2}, S

)
• Concatenation:

If L1 = L(G1) and L2 = L(G2) with G1 = (V1,Σ1,R1,S1) and G2 = (V2,Σ1,R2,S2), then L1 · L2 is
generated by the grammar

G =
(
V1 ⊔ V2, Σ1 ∪ Σ2, R1 ∪R2 ∪ {S → S1S2}, S

)
• Kleene star:

If L = L(G1) with G1 = (V1,Σ1,R1,S1), then L∗ is generated by the grammar

G =
(
V1, Σ1, R ∪ {S → ε | S1S}, S

)
Context-free languages are also not closed under complementation: using De Morgan’s laws, we can write
an intersection as:

L1 ∩ L2 = L1 ∪ L2

Since context-free languages are closed under union, if they were also closed under complementation,
they would be closed under intersection. But this cannot be the case.

7 Recursively Enumerable Languages

A Turing machine is a 7-tuple (Q,Σ,Γ,δ,q0,qaccept,qreject), consisting of

• a finite set Q of states;

• a finite set Σ, the input alphabet;

Formal Languages | 39

CS259 Recursively Enumerable Languages

• a finite set Γ, the tape alphabet not containing the blank symbol ⊔;

• a transition function δ : Q× Γ → Q× Γ× {L,R};

• an initial state q0 ∈ Q;

• an accepting state qaccept ∈ Q;

• an rejecting state qreject ∈ Q, where qreject ̸= qaccept.

Instead of a stack, a Turing machine is equipped with a tape of memory – an array of memory that
extends infinitely in one direction – and a read/write head pointing to one of the cells on the tape.
The {L,R} in the transition function indicates which way the read/write head should move after each
instruction.

⊢ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔0 0 1 0 0 1 0 1 · · ·

q

We mark the first cell with the reserved symbol ⊢, and unless otherwise specified, the other infinitely
many cells with the reserved blank symbol ⊔.

We can, as usual, represent a Turing machine as a state transition diagram. The labels in a state
transition diagram are given in the form a → b,m, where m ∈ {L,R} is a movement instruction, and
a,b ∈ Γ are tape symbols. This time, the arrow indicates reading an a at the current tape position,
writing a b, then moving the read/write head the specified direction.

Note that by this definition, the read/write head must move after every instruction. However, we can
perform a memory operation a → b without any net movement, which we denote by a → b, S, by
performing the memory operation, moving right, reading/writing the same symbol back into this cell,
then moving back left:

q1

q′

q2
a → b,S

a → b,R ⊔ → ⊔,L
a → a,L
b → b, L

...

x → x, L, x ∈ Γ

A configuration of a Turing machine M = (Q,Σ,Γ,δ,q0,qaccept,qreject) is a triple (u,q,v), where

• q ∈ Q is the current state of the machine;

• The string on the tape is u ◦ v, and the read/write head is on the first symbol of v.

Example. The configuration displayed on the tape above is(
{0,0},q,{1,0,0,1,0,1}

)
△

Example.

Formal Languages | 40

CS259 Recursively Enumerable Languages

• (⊢ ,q0,w) is the start configuration;

• (u,qaccept,v) is the accepting configuration;

• (u,qreject,v) is the rejecting configuration;

△

We say that a configuration X = (u,q,v) yields another configuration Y = (u′,p,v′) if the Turing machine
can go from X to Y with a single state transition.

The run of a Turing machine M = (Q,Σ,Γ,δ,q0,qaccept,qreject) on a word w is a sequence of configurations
C1, . . . ,Cr such that C1 = (⊢ ,q0,w) is the start configuration (i.e., the word w is written on the tape),
and such that each Ci yields Ci+1.

The run is accepting if Cr is the accepting configuration, and rejecting if Cr is the rejecting configuration.
Note that, unlike for the weaker automata we have seen, we have a new possible end state, because the
run of a Turing machine on any given word may not necessarily be finite. If the run is infinite, then we
say that the Turing machine does not halt.

We define the language L(M) to be the set of words w such that M accepts:

L(M) := {s ∈ Σ : the run of M on w is accepting}

A language L is Turing-recognisable or recursively enumerable (RE) if there exists a Turing machine M
which accepts precisely the strings in L. We do not require that M explicitly rejects strings outside of
L (since in this case, it may not halt), only that it does not accept any strings outside of L.

In contrast, a language L is Turing-decidable or recursive if there exists a Turing machine M which
accepts precisely the strings in L, and always halts. That is, it must also explicitly reject strings outside
of L.

If a Turing machine always halts, then we call it a decider or a total Turing machine.

Turing-decidable languages are precisely those for which an algorithm to determine membership exists.

Example. Is there a decider D, which, when given a Turing machine M , decides whether M :

(i) has more than 847 states?

(ii) takes more than 847 steps on the input ε?

(iii) takes more than 847 steps on some input?

(iv) takes more than 847 steps on all inputs?

(v) ever moves the read/write head more than 847 tape cells away from the endmarker on input ε?

(vi) accepts ε?

(vii) accepts any string at all?

(viii) accepts every string?

(i) Yes, just count the states until we reach 847. If we reach 847, accept M . Otherwise, reject M . As
we have bounded the maximum count, this procedure will always halt, so this describes a decider.

(ii) Yes, just simulate the run of M on ε for 847 steps, or until M halts, whichever happens earlier. If
M halts before 847 steps, reject M . Otherwise, accept M .

As we have bounded the number of steps, this will always halt, so this describes a decider.

Formal Languages | 41

CS259 7.1 Modifications of Turing Machines

(iii) Yes. Simulate the run of M on all possible inputs of size at most 847 for 847 steps, or until M
halts, whichever happens earlier.

There are (Σ + 1)847 many such inputs, which is finite, so the program will eventually halt.

It is also sufficient to only check these inputs, since if M runs for 847 steps on a word p of length
greater than 847, then M also runs for at least 847 steps when the input is only the first 847
symbols of p, since M can only possibly access the first 847 symbols of p in 847 steps.

(iv) Yes. The program for the previous case also decides this problem.

(v) Yes. If the read/write head of M never goes past the 847th cell, then there are only finitely many
possible configurations that M could be in, since a Turing machine only has finitely many states
and tape symbols. Namely, there are

t := 847 · |Q| · |Γ|847

possible configurations. So, we simulate the run of M on ε for t + 1 steps, or until it halts,
whichever happens earlier. If M ever moves the read/write head past the 847th cell, stop and
accept M . Otherwise, reject M .

(vi) No.

(vii) No.

(viii) No.

We will prove these last three cases later as a special case of the Membership Problem. △

7.1 Modifications of Turing Machines
There are many useful ways in which we might modify a Turing machine. However, this model of
computation is very robust, and many of these modifications end up being equivalent to an ordinary
Turing machine:

Example. What if we equipped a Turing machine with three tapes instead of one?

It turns out that we can simulate a Turing machine M3 with three tapes with a Turing machine M using
just one.

We make the tape alphabet of M a tuple to store three symbols in each cell. Then, to mark the position
of the read/write head, for each symbol a in the tape alphabets of M3, add a marked copy â to M . Then,
for each instruction moving a read/write head of M3, we instead replace the marked symbols. △

Using this, we can indeed simulate a Turing machine M using another Turing machine, as we have been
claiming in the previous example, by implementing two tapes and writing the source code of M on the
first tape and the input to be run on the second.

Example. What if the tape were infinite in both directions?

We can “fold” the tape somewhere, forming two tapes that are infinite in one direction only. As seen by
the previous example, we can simulate this on a Turing machine. △

An enumeration machine or enumerator is a modification of a Turing machine equipped with two tapes,

• an ordinary read/write tape, assumed to always start blank;

• an write-only output tape;

and a special enumeration state. When the machine enters the enumeration state, we say that it has
enumerated whatever word is on the output tape. Then, the machine erases the output tape and sends
the write-only head to the beginning of the output tape, before continuing.

Formal Languages | 42

CS259 7.1 Modifications of Turing Machines

Given an enumerator E, we define the language L(E) of E to be the set of words enumerated by E.

L(E) := {s : E enumerates s}

Theorem 7.1. A language L is Turing-recognisable if and only if there exists an enumerator E such
that L = L(E).

Proof. Suppose L = L(E). From E, construct a Turing machine M that operates on an input w as
follows:

• Run E on w;

• Each time E enumerates a word u, compare it to w;

• If w = u, accept. Otherwise, continue.

If L accepts w, then it will eventually be enumerated by E. If L does not accept E, then M never halts.
So, L(M) = L(E).

Now, suppose that L is Turing-recognisable, and let M recognise L. We construct an enumerator E that
operates on an input w as follows.

• Order all possible strings (i.e. via lexicographical order) as s1,s2, . . .

• For each i = 1,2,3, . . ., repeat the following:

– Run M for i steps on s1, . . . ,si.

– If any computations accept, print out the corresponding sj .

■

A Universal Turing Machine (UTM) U takes an encoding of a Turing machine M and a word w, written
as Enc(M)#w or just ⟨M,w⟩, and simulates the run of M on w.

Theorem 7.2. A language L is Turing-recognisable if and only if there exists an enumerator E such
that L = L(E).

Proof. Suppose L = L(E). From E, construct a Turing machine M that operates on an input w as
follows:

• Run E on w;

• Each time E enumerates a word u, compare it to w;

• If w = u, accept. Otherwise, continue.

If L accepts w, then it will eventually be enumerated by E. If L does not accept E, then M never halts.
So, L(M) = L(E).

Now, suppose that L is Turing-recognisable, and let M recognise L. We construct an enumerator E that
operates on an input w as follows.

• Order all possible strings (i.e. via lexicographical order) as s1,s2, . . .

• For each i = 1,2,3, . . ., repeat the following:

– Run M for i steps on s1, . . . ,si.

– If any computations accept, print out the corresponding sj .

■

Formal Languages | 43

CS259 7.2 Undecidability

7.2 Undecidability

7.2.1 The Halting Problem

Consider the language
HP :=

{
⟨M,x⟩ : M halts on x

}
This language is Turing-recognisable by a universal Turing machine as we can simply simulate the run
of M on x.

If M halts on x, then U accepts ⟨M,x⟩. Otherwise, U also fails to halt, which is allowed, as we only
prohibit explicit acceptance in Turing-recognisability. So, HP is Turing-recognisable.

However, is it Turing-decidable?

That is, given an instance ⟨M,x⟩ of the halting problem, can we decide with a definite yes-or-no answer
whether or not M will halt on any given string x?

Theorem 7.3. HP is undecidable.

Proof. Observe that any Turing machine M consists of only a finite amount of data. As such, this
information can be encoded in binary. With such an encoding, we can inversely interpret every binary
string b as a Turing machine Mb.

Suppose there exists a Turing machine U that decides the halting problem instance ⟨Mb,x⟩, given an
encoding b of a Turing machine and an input x. Construct a table of its outputs on all possible strings:

ε 0 1 00 01 10 11 000 001 010 · · ·
Mε H L L H L H H H L L · · ·
M0 L H H H L L L L H H · · ·
M1 L H L L H L L H H H · · ·
M01 H H H H L H H L L L · · ·
M10 H L H L L L L L H L · · ·
M11 H H H L H H L L L L · · ·
M000 L L L H H H H L H H · · ·
M001 L H H L L H H H H L · · ·
M010 H L L H L L H H L L · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

We construct a Turing machine K as follows.

• Given an input string b, construct Mb.

• Simulate U on ⟨Mb,b⟩.

• If U halts, go into an infinite loop.

• If U accepts, halt.

That is, K halts on b if and only if Mb does not half on b, and vice versa, so its output is the reverse of
the diagonal entries on the above table.

So, by construction, K disagrees with every Turing machine Mb on at least the input b, so K cannot be
on the table, contradicting that this table contains every Turing machine. ■

Formal Languages | 44

CS259 7.3 Computability and Reductions

7.2.2 The Membership Problem

Consider the language
MP :=

{
⟨M,x⟩ : x ∈ L(M)

}
Again, this language is Turing-recognisable by a universal Turing machine as we can simply simulate the
run of M on x.

However, the Membership Problem is again undecidable:

Theorem 7.4. MP is undecidable.

Proof. Suppose U decides MP. From U , we will construct a Turing machine K that decides HP as
follows:

• Given an input ⟨M,x⟩, K constructs a new Turing machine M ′ as follows:

– Add a new accept state.

– Redirect all incoming transitions to the old accept and reject states to the new accept state.

• Run U on M ′.

• If U accepts M ′, accept M . Otherwise, reject M .

We have that K accepts M if and only if U accepts M ′ if and only if M accepts or rejects x. That is, if
and only if M halts on x. So, K decides HP, which is undecidable. ■

7.3 Computability and Reductions
A function σ is computable if there is a decider such that, when run on input x, halts with σ(x) on the
output tape.

Given subsets A ⊆ Σ∗ and B ⊆ ∆∗, a function σ : Σ∗ → ∆∗ is a mapping reduction if

• For all x ∈ Σ, x ∈ A if and only if σ(x) ∈ B;

• σ is computable;

and we write A ≤m B if such a reduction exists.

Theorem 7.5.

• If A ≤m B and B is decidable, then A is decidable;

• If A ≤m B and A is undecidable, then B is undecidable.

Proof. Let M decide B and let σ be a reduction from A to B. Then, we define a decider N for A as
follows:

• Given an input w, compute σ(w).

• Simulate the run of M on σ(w), and return whatever M returns.

Because σ is a rediction from A to B, if w ∈ A, then σ(w) ∈ B. So, M accepts σ(w) whenever w ∈ A,
so N decides A.

The second claim is the contrapositive. ■

Here are some more languages:

ε-Acceptance :=
{
⟨M⟩ : ε ∈ L(M)

}
∃-Acceptance :=

{
⟨M⟩ : L(M) ̸= ∅

}
Formal Languages | 45

CS259 7.3 Computability and Reductions

∀-Acceptance :=
{
⟨M⟩ : L(M) = Σ∗}

Consider the following construction:

Let ⟨M,x⟩ be an instance of HP. Define the Turing machine M ′
x as follows:

• Given an input y, ignore y and simulate the run of M on input x.

• If M halts, accept y. Otherwise, reject y.

By construction, M ′
x accepts x if and only if M halts on x. So, ⟨M,x⟩ ∈ HP if and only if ⟨M ′

x,x⟩ ∈ MP.

In fact, ⟨M,x⟩ ∈ HP if and only if:

(i) ⟨M ′
x⟩ ∈ ε-Acceptance;

(ii) ⟨M ′
x⟩ ∈ ∃-Acceptance;

(iii) ⟨M ′
x⟩ ∈ ∀-Acceptance.

Because M ′
x ignores its input, it accepts any and all inputs if and only if M accepts x. That is, if and

only if ⟨M,x⟩ ∈ MP. So none of these languages are decidable.

Example. Is the following language is decidable?

L :=
{
⟨M1,M2⟩ : M1 accepts a word that M2 does not.

}
No, because we can decide ε-Acceptance given a decider M for L. We construct a decider U as follows:

• Given an input Mb, construct a Turing machine M ′ that accepts the string x if and only if x ̸= ε
and Mb accepts x.

• Simulate the run of M on ⟨Mb,M
′⟩.

• Accept Mb if M accepts. Otherwise, reject Mb.

By construction, Mb and M ′ accept the same non-empty words, but M ′ cannot accept the empty word.
Thus, Mb accepts a word that M ′ does not if and only if Mb accepts ε. So, U decides ε-Acceptance. △

Theorem 7.6.

• If A ≤m B and B is Turing-recognisable, then A is Turing-recognisable;

• If A ≤m B and A is not Turing-recognisable, then B is not Turing-recognisable.

Proof. Identical to the previous, with recognisers replacing deciders. ■

Theorem 7.7. A language L is decidable if and only if L and L are both Turing-recognisable.

Proof. If L is decidable, then a decider for L also functions as a recogniser for L. For L, use the same
decider and complement the answer.

Conversely, if L and L are both Turing-recognisable with recognisers P and Q, then define the decider
M as follows:

• Given an input x, simulate P and Q simultaneously with input x.

• If P accepts, halt and accept. If Q accepts, halt and reject.

■

Formal Languages | 46

CS259 7.4 Closure Properties of Turing-Recognisable and Turing-Decidable Languages

7.4 Closure Properties of Turing-Recognisable and Turing-Decidable Lan-
guages

• Complementation:

Decidable languages are closed under complementation, as we can simply invert the return value
of a decider.

However, Turing-recognisable languages are not closed under complementation.

• Union:

Decidable and Turing-recognisable languages are both closed under union.

• Intersection:

Decidable and Turing-recognisable languages are both closed under intersection.

• Kleene star:

Decidable and Turing-recognisable languages are both closed under Kleene star.

• Concatenation:

Decidable and Turing-recognisable languages are both closed under concatenation.

7.5 Pairwise Intersection Closures Properties

Regular CFL Decidable RE

Regular Regular

CFL CFL Decidable

Decidable Decidable Decidable Decidable

RE RE RE RE RE

Formal Languages | 47

	Table of Contents
	Introduction
	Regular Languages
	Deterministic Finite Automata
	Closure Properties of Regular Languages
	Non-Deterministic Finite Automata
	Epsilon-Closure
	Languages Recognised by NFA
	The Subset Construction
	Regular Expressions
	Generalised Non-Deterministic Finite Automata
	Languages Recognised by Regular Expressions

	Non-Regular Languages
	The Myhill-Nerode Theorem
	The Pumping Lemma for Regular Languages

	Grammars
	Parse Trees
	Right/Left-Linear Grammars
	Chomsky Hierarchy of Grammars

	Context-Free Languages
	Pushdown Automata
	Languages Recognised by PDA
	Chomsky Normal Form
	Cocke–Younger–Kasami (CYK) Parsing

	Non-Context-Free Languages
	The Pumping Lemma for Context-Free Languages
	Finiteness of Context-Free Languages
	Closure Properties of Context-Free Languages

	Recursively Enumerable Languages
	Modifications of Turing Machines
	Undecidability
	The Halting Problem
	The Membership Problem

	Computability and Reductions
	Closure Properties of Turing-Recognisable and Turing-Decidable Languages
	Pairwise Intersection Closures Properties

